
PARCEL v����

User Guide

Lawrence C� Cowsar� Carol A� San Souciey Ivan Yotovy

May� ����

� Introduction

This document is provided to describe the calling sequence and to augment the internal documen�
tation of PARCEL� a parallel cell�centered �nite di�erence elliptic equation solver� PARCEL

can be used to compute a cell�centered �nite di�erence approximation �or equivalently� the lowest�
order Raviart�Thomas�Nedelec �RTN�� mixed �nite element approximation� to linear� second�order
elliptic equations of the form�

�p�r �Drp � f in 	� �
�

with appropriate boundary conditions� The domain 	 is a rectangular solid region in IR�� More
general geometries can be handled via coordinate transformations� see� for example� �
� �� The
functions �� D� f and the boundary conditions may all be spatially varying� The coe�cient � must
be a nonnegative function that may be identically zero� D is a symmetric positive de�nite matrix�
not necessarily diagonal�

Problems in the form of �
� arise in many applications including subsurface �ow �see� e�g�� �����
electrostatics and implicit time discretizations of parabolic and hyperbolic equations in which case
� is related to the size of the time step� An instance of �
� also arises as a subproblem in the
application of the modi�ed method of characteristics to advection�di�usion equations ����

PARCEL solves �
� using a substructuring domain decomposition method in which the domain
	 is partitioned into a number of non�overlapping subdomains� New unknowns are introduced
along the interface between subdomains� and a reduced problem is formulated in terms of these
new unknowns� This approach was �rst proposed by Glowinski and Wheeler in ��� where they refer
to this procedure as �Method �� The reduced interface problem is solved using a preconditioned
conjugate gradient routine� The preconditioning options implemented in PARCEL include an
approximate Jacobi preconditioned conjugate gradient method described in ��� and a state of the
art Balancing preconditioner due to Mandel described and analyzed in ��� ���

PARCEL is a collection of several modules written in Fortran� The only valid entry point into
thePARCEL package is the subroutine Parcel�D��� In order to provide a certain level of portability
across computing platforms� PARCEL is implemented in a low�overhead communications platform
with support for the PICL� PVM� NX and CMMD communications libraries� The code was
developed on the Intel family of machines� and has been tested on a network of workstations�

�AT�T Bell Laboratories� ��� Mountain Ave�� Murray Hill� NJ �����	��
�

yTexas institute for Computational and Applied Mathematices� University of Texas� Austin� Texas ����

� Discretization and Solution Algorithm

PARCEL provides a node callable Fortran subroutine Parcel�D�� that computes the expanded
mixed �nite element approximation to the following second order scalar elliptic equation�

�u � �rp in 	 � ��

u � D�u in 	 � ���

�p �r � u � f in 	 � ���

p � q on �� � ���

u � n � g on ��� ���

The domain 	 and each subdomain is assumed to be a rectangular solid with a tensor product grid�
�� and consequently �� are assumed to each be the union of faces of cells on the outer boundary of
	� Furthermore� �� and �� are not assumed to be connected regions�

PARCEL employs a cell�centered �nite di�erence scheme equivalent to the lowest�order Raviart�
Thomas�Nedelec expanded mixed method with quadrature to discretize the equation over 	� Thus�
system unknowns are approximations to the scalar variable p at cell centers� Extra unknowns are
added along interfaces between subdomains� and the cell center unknowns are eliminated in terms
of these interface unknowns� The interface unknowns can be thought of as trace values of p at
these interface points� The resulting problem then is to solve a linear system whose solution is an
approximation to p along the interfaces between subdomains�

In ��� �� two substructuring domain decomposition schemes appropriate for mixed �nite element
discretizations were developed� In the scheme considered here� unknowns corresponding to the
common value of p along the interfaces between subdomains are introduced� These values are
adjusted iteratively using a conjugate gradient method until the values of u � n match on the
interface�

Each step of the algorithm proceeds as follows�

� Choose values of p along subdomain interfaces�

� Solve problems on each subdomain using the interface values above as Dirichlet boundary
data�

�� From the subdomain solutions for p� calculate values of u and check if values of u � n match
at the subdomain interfaces�

This de�nes the basic solution approach�

� The Balancing Preconditioner

While the interface problem is better conditioned than the original problem over cell�center values
of p� further precondtioning may be necessary� A particularly e�ective preconditioner is Mandel�s
Balancing preconditioner described and analyzed in ��� ��� In this section we give a brief overview of
the balancing preconditioner implemented in PARCEL� The reader is refered to ��� �� for further
information�

The balancing preconditioner uses a �coarse space� which spans the null space of the interface
operator S� This coarse space has far fewer degrees of freedom than the original problem� Denote
the coarse space as W �

The action of the balancing preconditioner M��
bal

on a vector r is computed in the following way�

� For the �rst residual of the conjugate gradient procedure� �nd wH � W satisfying

�SwH� vH� � �r� vH�� vH � W�

Set
rbal � r � SwH�

� Find any solution to the local Neumann problems

Si�i � rbali �

where Si is the projection of the operator S onto the degrees of freedom associated with
subdomain i� and rbali is the restriction of rbal to subdomain i�

�� Assemble the �i into a � de�ned over the entire interface�

�� Find �H satisfying
�S��� �H�� vH� � �r� vH�� vH � W�

�� Set
M��

bal
r � �� �H �

Thus� considering both the linear system solution and the application of the preconditioner�
each preconditioned conjugate gradient iteration requires�

� The solution of a Dirichlet problem on each subdomain arising from the substructuring domain
decomposition algorithm�

� The solution of a Neumann problem on each subdomain arising from the balancing precon�
ditioner�

�� A coarse solve� arising from the preconditioning step� which involves communication between
processors�

Data and work for the linear system solution are distributed over the processors� For ease of
computation� we assume that each processor holds data for exactly one subdomain� The processors
then can each factor and solve the local Dirichlet and Neumann subdomain problems independently�
Direct methods are used for these solves� The coarse problem matrix is formed and factored before
the conjugate gradient iteration begins� The factorization and solves with this matrix are also done
with direct methods� Thus� the subdomain problems are all handled locally while the coarse solve
is done globally and involves some communication overhead�

� The Parcel�D�� subroutine

In this section the calling sequence of Parcel�D�� is discussed� This is the only valid entry into the
PARCEL package� A call to Parcel�D�� has the following form�

call parcel�D�majv�minv�

� n��n��n��x��x��x��l��l��l��pres�vel��vel��vel��

� alpha�D�Dtype�f�bcType�in�nBCRegions�in�bcRegion��bcRegion��

� bcRegion��bc��bc��bc��mynbr�icube�rparam�iparam�idecomp�

� SDparam�rwk�len�iwk�ilen�

�

We will now describe the subroutine arguments� The arguments serve three purposes� describe
the local partial di�erential equation� describe the connectivity of the decomposition� and provide
tolerances and other parameters to the interface and subdomain problems�

Since PARCEL is a node�callable library� the code assumes that the global problem grid
and relevant problem information has been distributed to the nodes� Thus� all parameters to the
Parcel�D subroutine are for the SUBDOMAIN problem for the node calling the routine and not
for the GLOBAL problem�

� majv� Integer �INPUT� In an e�ort to make sure that the user is actually calling the release
of the package he thinks he is� the user must provide the correct major release number for
the PARCEL package� This document provides documentation for Major Release
� Hence�
majv should be set equal to
� A change in Major Release number may signify a major change
in the argument list of parcel�D� hence� a more current copy of the documentation should be
used� If a mismatch of Major Release number occurs� then parcel�D aborts�

� minv� Integer �INPUT� Like the Major Release number� the Minor Release number is used to
make sure that the user is calling the right version of the package� If a Minor release number
mismatch occurs� execution continues and a warning message is given� At the time of writing
this documentation the Minor Release number was ��

The majority of parameters are concerned with the speci�cation of the di�erential problem to
be solved�

� n
� Integer �INPUT� The number of cells in the �rst coordinate axis of the subdomain problem�
Each subdomain is rectangular with a tensor product grid�

� n� Integer �INPUT� The number of cells in the second coordinate axis of the subdomain
problem�

� n�� Integer �INPUT� The number of cells in the third coordinate axis of the subdomain
problem�

� x
� �n
�� Real!� Vector �INPUT� The mesh points in the �rst coordinate direction� It is
assumed that x
� � � x
�n
��

� x� �n�� Real!� Vector �INPUT� The mesh points in the second coordinate direction� It is
assumed that x� � � x�n��

� x�� �n��� Real!� Vector �INPUT� The mesh points in the third coordinate direction� It is
assumed that x�� � � x��n���

� l
�n�n���� Real!� Array �INPUT"OUTPUT� On input� the guess for the inter�subdomain
multipliers �denoted � in ���� for the faces with normals in the x
�direction� l
� l� and l� are
approximations to p along the interfaces of subdomains� In particular l
�!�!�
� corresponds
to the face x� � x
� � and l
�!�!�� to the face x� � x
�n
�� When a subdomain does not
share a face� i�e� the face is part of the outer boundary� those unknowns should be set to
zero� On output� l
 contains the converged solution for the inter�element multipliers on the
corresponding faces�

� l�n
�n���� Real!� Array �INPUT"OUTPUT� On input� the guess for the inter�subdomain
multipliers �denoted � in ���� for the faces with normals in the x�direction� In particular

�

l�!�!�
� corresponds to the face x� � x� � and l�!�!�� to the face x� � x�n�� When a
subdomain does not share a face� i�e� the face is part of the outer boundary� those unknowns
should be set to zero� On output� l contains the converged solution for the inter�element
multipliers on the corresponding faces�

� l��n
�n��� Real!� Array �INPUT"OUTPUT� On input� the guess for the inter�subdomain
multipliers �denoted � in ���� for the faces with normals in the x��direction� In particular
l��!�!�
� corresponds to the face x� � x�� � and l��!�!�� to the face x� � x��n��� When a
subdomain does not share a face� i�e� the face is part of the outer boundary� those unknowns
should be set to zero� On output� l� contains the converged solution for the inter�element
multipliers on the corresponding faces�

� pres�n
�n�n��� Real!� Array �INPUT"OUTPUT� On input� this array holds the initial guess
for the subdomain cell centered pressures� On return� the array holds an approximation to
the pressure that solves ������� pres�i
�i�i�� is an approximation to p at the center of cell
�i
�i�i��� i�e� at the point � �x
�i
��x
�i
�
��" � �x�i��x�i�
��"� �x��i���x��i��
��"��

� vel
� �n
�n�n��� Real!� Array �OUTPUT� This array holds the x
�component mixed method
velocity for this subdomain�

� vel�n
� �n�n��� Real!� Array �OUTPUT� This array holds the x�component mixed method
velocity for this subdomain�

� vel��n
�n� �n��� Real!� Array �OUTPUT� This array holds the x��component mixed method
velocity for this subdomain�

� alpha�n
�n�n��� Real!� Array �INPUT� The lower order term � in equations ������� The
entries in alpha should be non�negative� alpha�i
�i�i�� is either the value of � at the center
of cell �i
�i�i��� i�e� at the point � �x
�i
��x
�i
�
��" � �x�i��x�i�
��"� �x��i���x��i��

��"�� or the cell average of � on cell �i
�i�i���

� D � ## �INPUT� The datum D contains information used to describe the tensor D in ����
The most natural way to specify this information seems to be application speci�c� After
some debate� the speci�c contents of D are decided to be left unspeci�ed� D is passed to
several routines that construct the local subdomain matrices and estimate the diagonal of
local contributions to the Schur complements� Currently the following options are supported�
D may be one of two types of vectors or it may be a function name used to calculate the
values of the tensor� If D is of the �rst vector type� it should be a real!� long vector of length
��n
�
�!n!n� � n
!�n�
�!n� � n
!n!�n��
�� that is the concatenation of the x
� x
and x� edge transmissibilities� Note that in this case D is assumed to be a diagonal tensor�
If D is of the second vector type� it should be a real!� long vector of length �!n
!n!n� that
is the concatenation of the values at the cell centers for each of the � possible entries of D
�assuming D is a symmetric tensor�� Note that in this case the ordering of the � entries is
D��� D��� D��� D��� D��� and D��� If D is a function� D is a real!� function of the form�

real	
 function userD�i�j�i��i��i��

integer i�j�i��i��i�

where userD returns the i�j�entry of the tensor D at the center of local cell �i
�i�i���

�

� Dtype� Integer �INPUT� Dtype describes the type of representation of D that is used above�
If Dtype�
� then it is stored as a long vector of edge transmissibilities� if Dtype�� then it is
a user supplied function taking arguments as described above� If Dtype��� then it is stored
as a long vector of cell centered values� Symbolic names are de�ned for these types in the �le
��"Include"de�nes�h

� f�n
�n�n��� Real!� Array �INPUT� f is the right hand side source term f in ������� The
average value of f in the cell is a reasonable choice for its discretization�

� bcType in�nBCRegions in�� Integer Array �INPUT� Contains the type of boundary condition
for each boundary region of the GLOBAL problem� The types are given symbolic names
in ��"Include"BCtypes�h� and the values are�
 if the region is Neumann� if the region is
Dirichlet and � if the region is No Flow �i�e� Neumann with �ux��

� nBCRegions in� Integer �INPUT� The total number of boundary condition regions for the
global problem�

� bcRegion
�n�n���� Integer Array �INPUT� This array contains the boundary region number
to which each boundary cell with normal in the x
�direction belongs� The third index is
 if
the cell has a negative outward normal and if it has a positive outward normal�

� bcRegion�n
�n���� Integer Array �INPUT� This array contains the boundary region number
to which each boundary cell with normal in the x�direction belongs�

� bcRegion��n
�n��� Integer Array �INPUT� This array contains the boundary region number
to which each boundary cell with normal in the x��direction belongs�

� bc
�n�n���� Real!� Array �INPUT� This array contains the value of the subdomain bound�
ary conditions for boundary cells with normals in the x
�direction� If a face is internal�
bc�!�!�iface� should contain �s� If a face is on the outer boundary and Dirichlet data is
imposed on cell �i
�i� of that face �indicated by bcType in � �� then bc�i
�i�iface� should
contain the value of p at � x
� �� �x�i��x�i�
��"� �x��i���x��i��
��"� if iface is
� and
the value of p at � x
�n
�� �x�i��x�i�
��"� �x��i���x��i��
��"� if iface is � For No
Flow boundary conditions bc
�!�!�iface� should contain �s� And for Neumann conditions�
bc
�!�!�iface� should contain the value of the VOLUMETRIC �ux �Drp � n times �x�i��
x�i�
��!�x��i���x��i��
�� at � x
� �� �x�i��x�i�
��"� �x��i���x��i��
��"� if iface is
�
and the same quantity at the point � x
�n
�� �x�i��x�i�
��"� �x��i���x��i��
��"� if iface
is � Here n is the outward normal�

� bc�n
�n���� Real!� Array �INPUT� This array contains the boundary condition values for
subdomain faces with normals in the x�direction� See bc
 for a complete description�

� bc��n
�n��� Real!� Array �INPUT� This array contains the boundary condition values for
subdomain faces with normals in the x��direction� See bc
 for a complete description�

The next few arguments are vectors that encapsulate some properties of the domain decompo�
sition or some parameters describing the iterations� They are grouped together to try to provide a
partitioning of certain aspects of the code�

� mynbr����� Integer Array �INPUT� This variable describes the local connectivity of the sub�
domains� The array contains the node numbers of the neighboring nodes� Mynbr�idir�iface�

�

should be the node number of the neighbor sharing the face with a normal in the positive
�idir��direction if iface�� or negative �idir��direction if iface �
� If a node has no neighbor
node for a given face� mynbr�idir�iface� MUST be set to �
�

� icube���� Integer Vector �INPUT� Describes some of the �cube information��

� �icube�
��MYNOD� Node number�

� �icube����CUBESIZE� Number of processors allocated�

� rparam�
�� Real!� Vector �INPUT"OUTPUT� Real parameters for the interface solver�

� �rparam�
��epsIF� Relative reduction required for interface problem� �INPUT�

� �rparam���tolIF� Absolute tolerance required to solve interface problem� �INPUT�

� �rparam���
�� � times�
�
 � On output returns the time to execute certain internal
sections of parcel�D��� �OUTPUT�

� iparam���� Integer Vector �INPUT"OUTPUT� Integer parameters for the interface solver�

� �iparam�
��outUnit� Output unit number� � is standard output� �INPUT�

� �iparam���itest� Test problem number� Not really used currently� Will be used in
output later on� �INPUT�

� �iparam����iverb� Verbosity� Controls the amount of output to outUnit� iverb � � gives
interface progress� iverb �
� gives subdomain solve output as well� See Table for
more information about the available output� �INPUT�

� �iparam����idebug� Debug level� �INPUT�

� �iparam����ising� if global problem is well posed�
 if problem is singular �full Neumann
with � � � with null space equal to the constant functions� �INPUT�

� �iparam����PCstyle� The type of preconditioning for the interface problems� is no
preconditioning�
 and are preconditioning by the value of ntDn restricted to the
interface and � is Balancing preconditioning� �INPUT�

� �iparam����niterIF� The maximum number of conjugate gradient iterations to perform
on the interface problem� �INPUT�

� �iparam����istat� Status of the interface problem� istat � indicates failure to converge�
�OUTPUT�

� idecomp���� Integer Vector �INPUT� These parameters describe the decomposition� Since
the decompositions are thus far just tensor product rectangular� three integers su�ce� ndiv
�
ndiv� ndiv�� the number of divisions of the global domain along the � coordinate axes�

� SDparam���� Real!� Vector �INPUT� These parameters are passed to the subdomain solvers�
Currently� a memory intensive �exact solver� using a Cholesky factorization of the local
sti�ness matrix is used to solve the subdomain problems� Symbolic names are de�ned in
Include"sdsolver�h�

For the exact solver� one simply sets

� �SDparam�
���� for the diagonal tensor case� or

� �SDparam�
���� for the full tensor case�

�

The last arguments are the work space vectors� PARCEL allocates very little static memory�
Most of the allocations are made from the work vectors using the STACK memory utilities found
in Memory"memory�f�

� rwk�len�� Real!� Vector �INPUT� Real work vector�

� len� Integer �INPUT"OUTPUT� On input� the length of the rwk work vector� On output�
the maximum length of rwk used�

� iwk�ilen�� Integer Vector �INPUT� Integer work vector�

� ilen� Integer �INPUT"OUTPUT� On input� the length of the iwk work vector� On output�
the maximum length of iwk used�

� Return Codes

Errors in PARCEL fall into two categories� catastrophic and recoverable� A catastrophic error is
an error from which computation may not proceed� A recoverable error is a state in which certain
criteria may be violated� but the calculation may proceed� For example� if a node does not have
enough memory to allocate all storage� that is a catastrophic error� If a given subdomain fails to
converge in the prescribed number of iterations� the computation may be suspect� but the iteration
on the interface problem may continue� In the event of a catastrophic error� a message is sent to
the screen and the program aborts� It may be necessary for the user to then kill and release the
cube manually �if running on a hypercube� or to reset the PVM process� This may be necessary
since some nodes may not experience a catastrophic error and those nodes would block and hang�
Recoverable errors are reported to the user� but computation continues�

Catastrophic errors result in the node on which the error occurred calling the routine�

subroutine Parcelcrash�msg�errorcode�

c

integer errorcode

character	�	� msg

This routine must be supplied by the user and should take appropriate action to abort the compu�
tation� The two arguments are an error code and a descriptive message concerning the error�

For most modules of PARCEL� a return code greater than or equal to zero signi�es success� A
return code less than zero signi�es some degree of failure� Catastrophic errors are usually reported
by a return value of less than or equal to �
 �

Table
 lists the error and return codes that may be returned�

� Compiling and Running PARCEL

This section discusses how to compile and run the PARCEL code and test program parceltst� We
assume the source code has been installed�

After installing PARCEL� change to the ParcelDist directory� You should see the following
�les and directories

�

Bcfdnf LOGFILE Parcel

Com Makefile Test

Doc Memory

Include Packages

The contents of the directories are�

Bcfdnf Direct Cholesky subdomain solvers for diagonal and full tensor cases�

Com De�nitions of the generic communications routines for various computing platforms

Doc This documentation

Include Directory for shared include �les

LOGFILE File describing changes made to the code

Make�le Make�le for PARCEL

Memory Stack memory allocation routines

Packages Routines from Blas� Linpack and Eispack

Parcel The PARCEL source code

Test Routines for a test program that uses PARCEL

A full test program and a corresponding suite of test problems is contained in the Test subdirec�
tory� The next two paragraghs discuss how to compile and execute PARCEL with this program
driving it� A rather elaborate suite of sample test problems is provided in the directory Test�

To construct an executable �le using the PICLcommunication library� do the following� The
PICLcommunication libraries and a PICLusers� guide which contains instructions on compiling
and creating these libraries can be obtained from the server netlib$ornl�gov� Once the libraries
have been installed� assign the path of the PICLnode library to the variable PICLLIB in the Test
directory Make�le� From the ParcelDist directory� type �make picl�� This command will create all
the libraries needed for PARCEL and the executable �le for the test program� This executable
is called �parceltst� and will be in the Test subdirectory� There is also a shell script� written for
an Intel i�� computers� called �runit�� � in the Test subdirectory� This script allocates a cube�
runs the test program and releases the cube� The script takes the size of the cube �number of
subdomains� as its argument� In order to run parceltst on the Intel i�� � the number of nodes must
be a power of two or the cube will hang� For the sample input given in Appendix A� the command
�runit�� �� from the Test subdirectory will execute the test program�

Currently� PARCEL only runs with the SUN� implementation of PVM� To construct an
executable �le using the PVMcommunication library� do the following� Obtain PVMversion �� or
higher from the server netlib$ornl�gov or form some other source� Following the documentation in
the PVMusers guide ���� compile the appropriate libraries and executables necessary for the SUN�
implementation with dynamic process groups� These �les include� libpvm�a� libfpvm�a� libgpvm�a�
pvmgs� pvm gstat and pvmd� Assign the location of your pvm� directory to the name PVMDIR and
specify the locations of the above three libraries by modifying the PVMLIBS variable in the Make�le
contained within the Test directory� PARCEL assumes that there is a SUN� subdirectory within
your PVMLIBS directory� and it will look there for the above libraries� If these libraries are found
somewhere else� modify the variables LIBFPVM� LIBGPVM� and LIBPVM in the Make�le within

�

the Test directory to give their location� After specifying the library locations� typing �make sun��
will make the libraries for PARCEL and the executable test program �parceltst�� In accordance
with PVMconvention� the executable test program will be moved to the pvm�"bin"SUN� directory�
All that remains is to put a copy of the input �le into the pvm�"bin"SUN� directory�

Also from the base directory� one can execute �make clean� to remove all the intermediate �les
such as �!�o� �les�

� Some Notes on the Communication Library

PARCEL has been developed on the Intel family of machines using the PICLlibrary to provide
communication primitives� It has subsequently been ported to a set of generic communication
routines which support the PICL� PVM� NX and CMMD communication libraries� The choice
of communication libraries is made when PARCEL is compiled� Therefore� to use PARCEL in
its present state� the user must write the driver program using the appropriate communication
library or using the general communication library supplied with PARCEL�

The rest of the section discusses the generic communication interface found in the Com directory
and modi�cations necessary for running PARCEL on a PVMwith architectures not currently
supported�

The �les in the Com directory contain de�nitions of these generic routines in terms of PICL�
PVM� NX and CMMD� To add a new communications paradigm� one would just have to write
a new �le containing de�nitions of these generic routines in terms of the new paradigm�

Currently� all libraries for PARCEL are compiled and created using recursive Make�les� The
Make�le in the base directory sets a variable� ARCH� to either SUN� or PICL� then switches to each
subdirectory and calls the corresponding Make�le� Each of these Make�les sets the appropriate
compiler �ags and libraries for the architecture and calls itself in order to create the library� To
add another architecture to this system� one would need to modify the base directory Make�le
to include a value of ARCH for the new architecture� The best choice is the name given in the
PVMdocumentation as that will allow for easy access to the PVMlibraries� Then� within each
Make�le in directories Bcfdnf� Com� Memory� Packages� Packages�linpack� Parcel and Test� labels
must be added corresponding to the new ARCH extension and specifying appropriate compiler
options�

Appendix A� Test Program Input 	le

This section describes the input �le used in the test program parceltst found in the Test directory�
The input �le name �input� is hard coded in the driver source code �parceltst�f�� A sample

input �le is contained below�

�� Test Problem Number

� Verbosity of output

� Debug Level

�� N�

� N�

�� N�

 NDIV�

� NDIV�

� NDIV�

� PC Style� � � I� ��Avg� ��Har� �BP��� ��BAL

�� Robin B�C� factor

��� Maximum number of iterations to solve IF prob�

���e�� Relative resid� reduction for Interface

���e��� Absolute resid� for Interface

��� Max iterations in Subdomain Problem

� Number of orthog� directions

���e�� Relative tolerance for subdomains

��� Absolute tolerance for subdomains

� Solver� � � ex� diag�� � � ex� full

uniform File� BC regions �or �uniform��

� Number of BC regions

� BC for region �

� BC for region �

� BC for region �

� BC for region

� BC for region �

� BC for region �

�uniform BC��

� BC for �x���� edge Boundary Conditions

� BC for �x���� edge � � Neumann�

� BC for �x���� edge � � Dirchlet�

� BC for �x���� edge � � No Flow

� BC for �x���� edge � Robin BC

� BC for �x���� edge

� Grid Type� � � Uniform Grid � � Nonuniform

�� x����

�� x��n��

�� x����

�� x��n��

�� x����

�� x��n��

These inputs select test problem number

� described in the routines in user�f� The output

level is � and the debug level is � These two parameters control the amount of output written to
the screen� cf� Table �

The global problem will consist of a grid that is �x�x
�� divided into � subdomains in a �xx

con�guration� Hence each subdomain will be �x
x
��

The balancing preconditioner is used on the interface problem� Iteration on the interface prob�
lem will continue until the norm of the relative residual is reduced by
� e��� the norm of the
absolute residual becomes less than
� e� � or
 iterations are completed�

The next entries in the input �le specify parameters for the solution of the subdomain problems
if an iterative method is used� These options are currently not used�

The solver type is � indicating an exact solver for a diagonal tensor coe�cient local problem�
An exact solver for the full tensor coe�cient local problem is also available�

The boundary conditions are uniform� i�e� each face of the global boundary has the same
boundary condition� For this test problem the domain faces x
� � x
�
� x�� and x��
 have
Dirichlet boundary conditions speci�ed� whereas the faces x� and x�
 have Neumann boundary
conditions speci�ed� For uniform boundary conditions� the number of boundary condition regions
and the type for each of these regions is irrelevant� For nonuniform conditions a boundary condition
�le must be speci�ed �see Appendix B� as well as the number of regions and the type of condition
in each�

The last entries specify the grids� If the grid is chosen uniform �as in this case�� only the end
points of the intervals need to be speci�ed� For nonuniform grids� instead of x�� � and x��n��� the
input �le would contain x�� �� x��
�� x���� � � � � x��n�� followed by like grids for x� and x��

Several variables control the amount of output the user sees� While it is useful to observe such
data to gain insight into the calculations� the user should specify the minimum amount of output
that still gives the user peace of mind� The output of data to the screen is a very time costly
procedure on most machines� Even a relatively small amount of output can double run time% Table
 lists the additional output one obtains by increasing the verbosity variable� There are several
jumps in the verbosity values to provide room for expansion and customization�

Appendix B� Setting Up Boundary Conditions for the Test Pro

gram

This section exlains conventions for setting up boundary conditions for the parceltst program� If
the boundary conditions are uniform� one boundary condition is speci�ed for each face of the global
domain�

More generally� the outer boundary is divided into regions where each region has the same type
of boundary condition� The regions are speci�ed in a �le �with a name given in the input �le� in
the following format�

n��n��n� �global problem size�

c

c left face

c

��bcRegion�j�k��j � ��n���k � ��n��

c

c right face

c

��bcRegion�j�k��j � ��n���k � ��n��

c

c front face

c

��bcRegion�i�k��i � ��n���k � ��n��

c

c back face

c

��bcRegion�i�k��i � ��n���k � ��n��

c

c bottom face

c

��bcRegion�i�j��i � ��n���j � ��n��

c

c top face

c

��bcRegion�i�j��i � ��n���j � ��n��

end

Here� bcRegion is the array into which the values of the region numbers will be read for each
boundary cell of the global domain� For instance� the left face has n x n� cell faces� The region
to which each cell belongs is speci�ed for that face� The next face will be the right face� and so on�
The boundary condition type for each region is given in the input �le�

A preprocessing program called �rdistr� contained in the Test directory must be run prior to
running parceltst� This program reads the input and the boundary condition regions �les� and
creates �les called innode#### �#### � ����� is the node number� for all processors� These
�les contain the boundary condition regions data and are read in PARCEL by the processors�

�

Appendix C� Test Program Sample Output

The following is the output from a single run with the above input �le�

PARCEL �Parallel Cell�Centered Elliptic Solver�

PARCEL Release V��

� �Revision������� �Date� �����
��� ������ � �

Test Problem Number � �� Verbosity� � Debug� �

input n� n� n�

�� � ��

input ndiv� ndiv� ndiv�

 � �

PCstyle� �

RobinR� ������������������E����

Max� Interface Its� eps�if tol�if

��� ����������E��� ����������E���

niter northog eps�sd tol�sd

��� � ����������E��
 ����������E���

solverType� �

BCs� � � � � � �

X�� ������������������E���� �����������������

X�� ������������������E���� �����������������

X�� ������������������E���� �����������������

Asymmetry is� ����
������
�
E����

Balance matrix is structurally singular �

Continuing with eigen�decomposition

Setup Time� ��

��� �secs�

Residual Time� ���
����� �secs�

CGIter� � Residual Norm� �����E��� � ����E����

CGIter� � Residual Norm� �����E��� � �����E����

CGIter� � Residual Norm� �����E��� � ��
��E����

CGIter� � Residual Norm� �����E��� � �����E����

CGIter� Residual Norm� ���
�E��� � �����E����

CGIter� � Residual Norm� �����E��� � �����E����

CGIter� � Residual Norm� �����E��� � ����E����

CGIter� � Residual Norm� �����E�� � �����E���

CGIter�
 Residual Norm� �����E��� � �����E����

CGIter� � Residual Norm� �����E��� � �����E����

Final� � � �����D��� �����D��� � � � � � � � �

Norms� � �����D��� �����D��� ���
�D��� �����D���

Soln Time� ������� �secs�

l� error � ���
������������E���

velocity l� error � ����������������E����

velocity L�inf error � �����
��������
��E����

Node � returns � Time� ����� ����� ��

��� ��
 ��

Max Total Time � Iter� Condition � Status

�������
 �������E��� �

�

We �rst see an identi�cation message giving the version number and revision date� The next
section of output just echos the reading of the input �le� The next line starts output from the
node� Asymmetry refers to the degree of asymmetry in the balancing matrix� The time to build
the preconditioner and factor the local problem matrices was then reported in the Setup Time�
The Residual Time gives the time taken in putting the problem in residual form� see ���� The next
�ve lines give information on the conjugate gradient iterations� The solution time for node is
then given� We next see various errors of the pressure and velocity solutions� Lastly� the solution
time for the slowest node is given along with the number of conjugate gradient iterations and the
condition number of the problem�

Appendix D� Internal Distribution Notes

If you have an account on the Texas Institute for Computational and Applied Mathematics network
at the University of Texas� the best way to obtain the PARCEL code is to get in touch with Ivan
Yotov �yotov$ticam�utexas�edu�� The �les are controlled by the revision control system which
handles automatic updating of new versions� Your version of PARCEL will be able to take
advantage of this updating�

To install PARCEL� you will need the shell script �installparcel�� When executed from your
root directory� this script will set up the necessary structure for you to use the latest version
of PARCEL and fetch this version for you� The only thing left will be for you to compile the
appropriate version�

References

�
� T� Arbogast� M� F� Wheeler� and I� Yotov� Logically rectangular mixed methods for
groundwater �ow and transport on general geometry� Dept� Comp� Appl� Math� TR��� �� Rice
University�
����

�� � Mixed �nite elements for elliptic problems with tensor coe	cients as cell
centered �nite
di�erences� Dept� Comp� Appl� Math� TR��� �� Rice University� Houston� TX ���
� Mar�

���� To appear SIAM J� Numer� Anal��
���� vol� ���

��� L� C� Cowsar� J� Mandel� and M� F� Wheeler� Balancing domain decomposition for
mixed �nite elements� Mathematics of Computation� �� �
����� pp� ����

��

��� L� C� Cowsar and M� F� Wheeler� Parallel domain decomposition method for mixed �nite
elements for elliptic partial di�erential equations� in Proceedings of the Fourth International
Symposium on Domain Decomposition Methods for Partial Di�erential Equations� R� Glowinski
et al�� eds�� SIAM�
��
�

��� J� Douglas� Jr and T� F� Russell� Numerical methods for convection
dominated di�usion
problems based on combining the method of characteristics with �nite element or �nite i�erence
procedures� SIAM J� Numer� Anal��
� �
���� pp� ��
�����

��� A� Geist� A� Beguelin� J� Dongarra� W� Jiang� R� Manchek� and V� Sunderam�
Pvm ��� users guide and reference manual� Tech� Rep� ORNL"TM�

��� Oak Ridge National
Laboratory� Feb�
����

�

��� R� Glowinski and M� F� Wheeler� Domain decomposition and mixed �nite element methods
for elliptic problems� in Proceedings of the First International Symposium on Domain Decom�
position Methods for Partial Di�erential Equations� R� Glowinski et al�� eds�� SIAM� Jan�
����
pp�
���
��

��� J� Mandel� Balancing domain decomposition� Comm� on Applied Num� Methods� � �
�����
pp� ����
�

��� T� F� Russell and M� F� Wheeler� Finite element and �nite di�erence methods for contin

uous �ows in porous media� in Mathematics of reservoir simulation� R� E� Ewing� ed�� SIAM�
Philadelphia�
���� ch� II� pp� ���
 ��

�

Return Code Meaning Solution

 Convergence in the interface problem
via the absolute tolerance criteria

 Convergence in the interface problem
via the relative residual criteria

�
 Maximum number of interface iterations Results suspect
exceeded

� Too many conjugate gradient iterations Results suspect
�� Nested Factorization failed Results suspect
�
 Problem too large Increase inmax or decrease

local problem size
�
 Not enough
D space on a node Increase inmax in size�h
�
� Memory allocation error
�
� Not enough work space Increase inmax or idim�
�
� Grids not nested Improper local grid re�nement
�� Generic error To be categorized soon
��
 Major Version number incorrect Get updated documentation and

correct variable majv in call to
parcel�D��

�� Cube too large Reset MAXCUBE in
�Include"msgtypes�h�
and recompile parcel�D��

��� Unknown Interface Matching Method
��� Balancing Preconditioner is not Use other PC� use exact solves

positive de�nite
��� Solver type not supported
��� Speci�ed more than the max� number Adjust BCRegions in size�h

of boundary condition regions
��� Unknown boundary condition type
��� Error reading boundary condition types
��� Inconsistent boundary conditions

Table �� Return Codes

Verbosity Output

 Fatal error messages only

 Run time data
� Status message per conjugate gradient iteration
� Eigenvalue estimate from conjugate gradients

� Subdomain iterations

Table �� Verbosity and Output

�

